Monday, 27 November 2017

Java Program to Check if an UnDirected Graph is a Tree or Not Using DFS


Code:

package com.executecodes.graph;

import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;

class TGraph
{
    static final int MAXV      = 100;
    static final int MAXDEGREE = 50;
    public int       edges[][] = new int[MAXV + 1][MAXDEGREE];
    public int       degree[]  = new int[MAXV + 1];
    public int       nvertices;
    public int       nedges;

    TGraph()
    {
        nvertices = nedges = 0;
        for (int i = 1; i <= MAXV; i++)
            degree[i] = 0;
    }

    void read_CCGraph(boolean directed)
    {
        int x, y;
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter the number of vertices: ");
        nvertices = sc.nextInt();
        System.out.println("Enter the number of edges: ");
        int m = sc.nextInt();
        System.out.println("Enter the edges: ");
        for (int i = 1; i <= m; i++)
        {
            x = sc.nextInt();
            y = sc.nextInt();
            insert_edge(x, y, directed);
        }
        sc.close();
    }

    void insert_edge(int x, int y, boolean directed)
    {
        if (degree[x] > MAXDEGREE)
            System.out.printf(
                    "Warning: insertion (%d, %d) exceeds max degree\n", x, y);
        edges[x][degree[x]] = y;
        degree[x]++;
        if (!directed)
            insert_edge(y, x, true);
        else
            nedges++;
    }

    void print_CCGraph()
    {
        for (int i = 1; i <= nvertices; i++)
        {
            System.out.printf("%d: ", i);
            for (int j = degree[i] - 1; j >= 0; j--)
                System.out.printf(" %d", edges[i][j]);
            System.out.printf("\n");
        }
    }
}

public class CheckUndirectedGraphisTree
{
    static final int MAXV         = 100;
    static boolean   processed[]  = new boolean[MAXV];
    static boolean   discovered[] = new boolean[MAXV];
    static int       parent[]     = new int[MAXV];

    static void bfs(TGraph g, int start)
    {
        Queue q = new LinkedList();
        int i, v;
        q.offer(start);
        discovered[start] = true;
        while (!q.isEmpty())
        {
            v = q.remove();
            // process_vertex(v);
            processed[v] = true;
            for (i = g.degree[v] - 1; i >= 0; i--)
            {
                if (!discovered[g.edges[v][i]])
                {
                    q.offer(g.edges[v][i]);
                    discovered[g.edges[v][i]] = true;
                    parent[g.edges[v][i]] = v;
                }
            }
        }
    }

    static void initialize_search(TGraph g)
    {
        for (int i = 1; i <= g.nvertices; i++)
        {
            processed[i] = discovered[i] = false;
            parent[i] = -1;
        }
    }

    static void process_vertex(int v)
    {
        System.out.printf(" %d", v);
    }

    static int connected_components(TGraph g)
    {
        int c;
        initialize_search(g);
        c = 0;
        for (int i = 1; i <= g.nvertices; i++)
        {
            if (!discovered[i])
            {
                c++;
                // System.out.printf("Component %d:", c);
                bfs(g, i);
                // System.out.printf("\n");
            }
        }
        return c;
    }

    static public void main(String[] args)
    {
        TGraph g = new TGraph();
        g.read_CCGraph(false);
        g.print_CCGraph();
        boolean flag = false;
        if (g.nedges == g.nvertices - 1)
        {
            flag = true;
            if (connected_components(g) == 1 && flag == true)
            {
                System.out
                        .println("Graph is a Tree, as graph is connected and Euler's criterion is satisfied.");
            }
        }
        else
        {
            System.out
                    .println("Graph is not a Tree, as Euler's criterion is not satisfied");
        }
    }
}


Output:

Enter the number of vertices: 
6
Enter the number of edges: 
7
Enter the edges:
1 2
2 3
2 4
4 5
5 6
6 4
6 3
1:  2
2:  4 3 1
3:  6 2
4:  6 5 2
5:  6 4
6:  3 4 5
Graph is not a Tree, as Euler's criterion is not satisfied

Enter the number of vertices: 
4
Enter the number of edges: 
3
Enter the edges:
1 2
1 3
2 4
1:  3 2
2:  4 1
3:  1
4:  2
Graph is a Tree, as graph is connected and Euler's criterion is satisfied.



More Java Programs:
















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...