Code:
package com.executecodes.graph;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
class DTGraph
{
static final int MAXV = 100;
static final int MAXDEGREE = 50;
public int edges[][] = new int[MAXV + 1][MAXDEGREE];
public int degree[] = new int[MAXV + 1];
public int nvertices;
public int nedges;
DTGraph()
{
nvertices = nedges = 0;
for (int i = 1; i <= MAXV; i++)
degree[i] = 0;
}
void read_CCGraph(boolean directed)
{
int x, y;
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of vertices: ");
nvertices = sc.nextInt();
System.out.println("Enter the number of edges: ");
int m = sc.nextInt();
System.out.println("Enter the edges:
for (int i = 1; i <= m; i++)
{
x = sc.nextInt();
y = sc.nextInt();
insert_edge(x, y, directed);
}
sc.close();
}
void insert_edge(int x, int y, boolean directed)
{
if (degree[x] > MAXDEGREE)
System.out.printf(
"Warning: insertion (%d, %d) exceeds max degree\n", x, y);
edges[x][degree[x]] = y;
degree[x]++;
if (!directed)
insert_edge(y, x, true);
else
nedges++;
}
void print_CCGraph()
{
for (int i = 1; i <= nvertices; i++)
{
System.out.printf("%d: ", i);
for (int j = degree[i] - 1; j >= 0; j--)
System.out.printf(" %d", edges[i][j]);
System.out.printf("\n");
}
}
}
public class CheckDirectedGraphisTree
{
static final int MAXV = 100;
static boolean processed[] = new boolean[MAXV];
static boolean discovered[] = new boolean[MAXV];
static int parent[] = new int[MAXV];
static void bfs(DTGraph g, int start)
{
Queue
int i, v;
q.offer(start);
discovered[start] = true;
while (!q.isEmpty())
{
v = q.remove();
// process_vertex(v);
processed[v] = true;
for (i = g.degree[v] - 1; i >= 0; i--)
{
if (!discovered[g.edges[v][i]])
{
q.offer(g.edges[v][i]);
discovered[g.edges[v][i]] = true;
parent[g.edges[v][i]] = v;
}
}
}
}
static void initialize_search(DTGraph g)
{
for (int i = 1; i <= g.nvertices; i++)
{
processed[i] = discovered[i] = false;
parent[i] = -1;
}
}
static void process_vertex(int v)
{
System.out.printf(" %d", v);
}
static int connected_components(DTGraph g)
{
int c;
initialize_search(g);
c = 0;
for (int i = 1; i <= g.nvertices; i++)
{
if (!discovered[i])
{
c++;
// System.out.printf("Component %d:", c);
bfs(g, i);
// System.out.printf("\n");
}
}
return c;
}
static public void main(String[] args)
{
DTGraph g = new DTGraph();
g.read_CCGraph(true);
g.print_CCGraph();
boolean flag = false;
if (g.nedges == g.nvertices - 1)
{
flag = true;
if (connected_components(g) == 1 && flag == true)
{
System.out
.println("Graph is a Tree, as graph is connected and Euler's criterion is satisfied.");
}
}
else
{
System.out
.println("Graph is not a Tree, as Euler's criterion is not satisfied.");
}
}
}
Output:
Enter the number of vertices:
6
Enter the number of edges:
7
Enter the edges:
1 2
2 3
2 4
4 5
5 6
6 4
6 3
1: 2
2: 4 3
3:
4: 5
5: 6
6: 3 4
Graph is not a Tree, as Euler's criterion is not satisfied.
Enter the number of vertices:
4
Enter the number of edges:
3
Enter the edges:
1 3
1 2
3 4
1: 2 3
2:
3: 4
4:
Graph is a Tree, as graph is connected and Euler's criterion is satisfied.
More Java Programs: