Code:
#include iostream
#include list
#include stack
using namespace std;
class Graph
{
int V; // No. of vertices
list
// A recursive function to print DFS starting from v
void DFSUtil(int v, bool visited[]);
public:
// Constructor and Destructor
Graph(int V)
{
this->V = V;
adj = new list
}
~Graph()
{
delete[] adj;
}
// Method to add an edge
void addEdge(int v, int w);
// The main function that returns true if the graph is strongly
// connected, otherwise false
bool isSC();
// Function that returns reverse (or transpose) of this graph
Graph getTranspose();
};
// A recursive function to print DFS starting from v
void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and print it
visited[v] = true;
// Recur for all the vertices adjacent to this vertex
list
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
// Function that returns reverse (or transpose) of this graph
Graph Graph::getTranspose()
{
Graph g(V);
for (int v = 0; v < V; v++)
{
// Recur for all the vertices adjacent to this vertex
list
for (i = adj[v].begin(); i != adj[v].end(); ++i)
{
g.adj[*i].push_back(v);
}
}
return g;
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
// The main function that returns true if graph is strongly connected
bool Graph::isSC()
{
// St1p 1: Mark all the vertices as not visited (For first DFS)
bool visited[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Step 2: Do DFS traversal starting from first vertex.
DFSUtil(0, visited);
// If DFS traversal doesn’t visit all vertices, then return false.
for (int i = 0; i < V; i++)
if (visited[i] == false)
return false;
// Step 3: Create a reversed graph
Graph gr = getTranspose();
// Step 4: Mark all the vertices as not visited (For second DFS)
for (int i = 0; i < V; i++)
visited[i] = false;
// Step 5: Do DFS for reversed graph starting from first vertex.
// Staring Vertex must be same starting point of first DFS
gr.DFSUtil(0, visited);
// If all vertices are not visited in second DFS, then
// return false
for (int i = 0; i < V; i++)
if (visited[i] == false)
return false;
return true;
}
// Driver program to test above functions
int main()
{
// Create graphs given in the above diagrams
Graph g1(5);
g1.addEdge(0, 1);
g1.addEdge(1, 2);
g1.addEdge(2, 3);
g1.addEdge(3, 0);
g1.addEdge(2, 4);
g1.addEdge(4, 2);
cout << "The graph is weakly connected? ";
g1.isSC() ? cout << "No\n" : cout << "Yes\n";
Graph g2(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
cout << "The graph is weakly connected? ";
g2.isSC() ? cout << "No\n" : cout << "Yes\n";
return 0;
}
Output:
The graph is weakly connected? No
The graph is weakly connected? Yes
------------------
(program exited with code: 0)
Press return to continue
More C++ Programs: