Wednesday, 22 November 2017

C++ Program to Test Using DFS Whether a Directed Graph is Weakly Connected or Not


Code:

#include   iostream
#include   list
#include   stack
using namespace std;

class Graph
{
        int V; // No. of vertices
        list *adj; // An array of adjacency lists

        // A recursive function to print DFS starting from v
        void DFSUtil(int v, bool visited[]);
    public:
        // Constructor and Destructor
        Graph(int V)
        {
            this->V = V;
            adj = new list [V];
        }
        ~Graph()
        {
            delete[] adj;
        }

        // Method to add an edge
        void addEdge(int v, int w);

        // The main function that returns true if the graph is strongly
        // connected, otherwise false
        bool isSC();

        // Function that returns reverse (or transpose) of this graph
        Graph getTranspose();
};

// A recursive function to print DFS starting from v
void Graph::DFSUtil(int v, bool visited[])
{
    // Mark the current node as visited and print it
    visited[v] = true;

    // Recur for all the vertices adjacent to this vertex
    list::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFSUtil(*i, visited);
}

// Function that returns reverse (or transpose) of this graph
Graph Graph::getTranspose()
{
    Graph g(V);
    for (int v = 0; v < V; v++)
    {
        // Recur for all the vertices adjacent to this vertex
        list::iterator i;
        for (i = adj[v].begin(); i != adj[v].end(); ++i)
        {
            g.adj[*i].push_back(v);
        }
    }
    return g;
}

void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}

// The main function that returns true if graph is strongly connected
bool Graph::isSC()
{
    // St1p 1: Mark all the vertices as not visited (For first DFS)
    bool visited[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;

    // Step 2: Do DFS traversal starting from first vertex.
    DFSUtil(0, visited);

    // If DFS traversal doesn’t visit all vertices, then return false.
    for (int i = 0; i < V; i++)
        if (visited[i] == false)
            return false;

    // Step 3: Create a reversed graph
    Graph gr = getTranspose();

    // Step 4: Mark all the vertices as not visited (For second DFS)
    for (int i = 0; i < V; i++)
        visited[i] = false;

    // Step 5: Do DFS for reversed graph starting from first vertex.
    // Staring Vertex must be same starting point of first DFS
    gr.DFSUtil(0, visited);

    // If all vertices are not visited in second DFS, then
    // return false
    for (int i = 0; i < V; i++)
        if (visited[i] == false)
            return false;

    return true;
}

// Driver program to test above functions
int main()
{
    // Create graphs given in the above diagrams
    Graph g1(5);
    g1.addEdge(0, 1);
    g1.addEdge(1, 2);
    g1.addEdge(2, 3);
    g1.addEdge(3, 0);
    g1.addEdge(2, 4);
    g1.addEdge(4, 2);
    cout << "The graph is weakly connected? ";
    g1.isSC() ? cout << "No\n" : cout << "Yes\n";

    Graph g2(4);
    g2.addEdge(0, 1);
    g2.addEdge(1, 2);
    g2.addEdge(2, 3);
    cout << "The graph is weakly connected? ";
    g2.isSC() ? cout << "No\n" : cout << "Yes\n";

    return 0;
}


Output:

The graph is weakly connected? No
The graph is weakly connected? Yes

------------------
(program exited with code: 0)
Press return to continue


More C++ Programs:















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...