Code:
#include iostream
#include list
#include stack
using namespace std;
class Graph
{
int V; // No. of vertices
list
// Fills Stack with vertices (in increasing order of finishing times)
// The top element of stack has the maximum finishing time
void fillOrder(int v, bool visited[], stack
// A recursive function to print DFS starting from v
void DFSUtil(int v, bool visited[]);
public:
Graph(int V);
void addEdge(int v, int w);
// The main function that finds and prints strongly connected components
int printSCCs();
// Function that returns reverse (or transpose) of this graph
Graph getTranspose();
};
Graph::Graph(int V)
{
this->V = V;
adj = new list
}
// A recursive function to print DFS starting from v
void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and print it
visited[v] = true;
cout << v << " ";
// Recur for all the vertices adjacent to this vertex
list
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
Graph Graph::getTranspose()
{
Graph g(V);
for (int v = 0; v < V; v++)
{
// Recur for all the vertices adjacent to this vertex
list
for (i = adj[v].begin(); i != adj[v].end(); ++i)
{
g.adj[*i].push_back(v);
}
}
return g;
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v’s list.
}
void Graph::fillOrder(int v, bool visited[], stack
{
// Mark the current node as visited and print it
visited[v] = true;
// Recur for all the vertices adjacent to this vertex
list
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
fillOrder(*i, visited, Stack);
// All vertices reachable from v are processed by now, push v to Stack
Stack.push(v);
}
// The main function that finds and prints all strongly connected components
int Graph::printSCCs()
{
stack
// Mark all the vertices as not visited (For first DFS)
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Fill vertices in stack according to their finishing times
for (int i = 0; i < V; i++)
if (visited[i] == false)
fillOrder(i, visited, Stack);
// Create a reversed graph
Graph gr = getTranspose();
// Mark all the vertices as not visited (For second DFS)
for (int i = 0; i < V; i++)
visited[i] = false;
int count = 0;
// Now process all vertices in order defined by Stack
while (Stack.empty() == false)
{
// Pop a vertex from stack
int v = Stack.top();
Stack.pop();
// Print Strongly connected component of the popped vertex
if (visited[v] == false)
{
gr.DFSUtil(v, visited);
cout << endl;
}
count++;
}
return count;
}
// Driver program to test above functions
int main()
{
// Create a graph given in the above diagram
Graph g(5);
g.addEdge(1, 0);
g.addEdge(0, 2);
g.addEdge(2, 1);
g.addEdge(0, 3);
g.addEdge(3, 4);
cout << "Following are strongly connected components in given graph \n";
g.printSCCs();
return 0;
}
Output:
Following are strongly connected components in given graph
0 1 2
3
4
Graph is weakly connected.
------------------
(program exited with code: 0)
Press return to continue
More C++ Programs: