Tuesday, 28 November 2017

Java Program to Implement Lloyd’s Algorithm


Code:

import java.util.ArrayList;

public class GenLloyd
{
    protected double[][] samplePoints;
    protected double[][] clusterPoints;

    int[] pointApproxIndices;
    int pointDimension = 0;
    protected double epsilon = 0.0005;
    protected double avgDistortion = 0.0;

    /**
     * Create Generalized Lloyd object with an array of sample points
     */
    public GenLloyd(double[][] samplePoints)
    {
        this.setSamplePoints(samplePoints);
    }

    /**
     * Return epsilon parameter (accuracy)
     */
    public double getEpsilon()
    {
        return epsilon;
    }

    /**
     * Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon
     * < 0.1
     */
    public void setEpsilon(double epsilon)
    {
        this.epsilon = epsilon;
    }

    /**
     * Set array of sample points
     */
    public void setSamplePoints(double[][] samplePoints)
    {
        if (samplePoints.length > 0)
        {
            this.samplePoints = samplePoints;
            this.pointDimension = samplePoints[0].length;
        }
    }

    /**
     * Get array of sample points
     */
    public double[][] getSamplePoints()
    {
        return samplePoints;
    }

    /**
     * Get calculated cluster points. cluster points will be
     * calculated and returned
     */
    public double[][] getClusterPoints(int numClusters)
    {
        this.calcClusters(numClusters);

        return clusterPoints;
    }

    protected void calcClusters(int numClusters)
    {
        // initialize with first cluster
        clusterPoints = new double[1][pointDimension];

        double[] newClusterPoint = initializeClusterPoint(samplePoints);
        clusterPoints[0] = newClusterPoint;

        if (numClusters > 1)
        {
            // calculate initial average distortion
            avgDistortion = 0.0;
            for (double[] samplePoint : samplePoints)
            {
                avgDistortion += calcDist(samplePoint, newClusterPoint);
            }

            avgDistortion /= (double) (samplePoints.length * pointDimension);

            // set up array of point approximization indices
            pointApproxIndices = new int[samplePoints.length];

            // split the clusters
            int i = 1;
            do
            {
                i = splitClusters();
            } while (i < numClusters);
        }
    }

    protected int splitClusters()
    {
        int newClusterPointSize = 2;
        if (clusterPoints.length != 1)
        {
            newClusterPointSize = clusterPoints.length * 2;
        }

        // split clusters
        double[][] newClusterPoints = new double[newClusterPointSize][pointDimension];
        int newClusterPointIdx = 0;
        for (double[] clusterPoint : clusterPoints)
        {
            newClusterPoints[newClusterPointIdx] = createNewClusterPoint(
                    clusterPoint, -1);
            newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint(
                    clusterPoint, +1);

            newClusterPointIdx += 2;
        }

        clusterPoints = newClusterPoints;

        // iterate to approximate cluster points
        // int iteration = 0;
        double curAvgDistortion = 0.0;
        do
        {
            curAvgDistortion = avgDistortion;

            // find the min values
            for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
            {
                double minDist = Double.MAX_VALUE;
                for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++)
                {
                    double newMinDist = calcDist(samplePoints[pointIdx],
                            clusterPoints[clusterPointIdx]);
                    if (newMinDist < minDist)
                    {
                        minDist = newMinDist;
                        pointApproxIndices[pointIdx] = clusterPointIdx;
                    }
                }
            }

            // update codebook
            for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++)
            {
                double[] newClusterPoint = new double[pointDimension];
                int num = 0;
                for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
                {
                    if (pointApproxIndices[pointIdx] == clusterPointIdx)
                    {
                        addPointValues(newClusterPoint, samplePoints[pointIdx]);
                        num++;
                    }
                }

                if (num > 0)
                {
                    multiplyPointValues(newClusterPoint, 1.0 / (double) num);
                    clusterPoints[clusterPointIdx] = newClusterPoint;
                }
            }

            // update average distortion
            avgDistortion = 0.0;
            for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
            {
                avgDistortion += calcDist(samplePoints[pointIdx],
                        clusterPoints[pointApproxIndices[pointIdx]]);
            }

            avgDistortion /= (double) (samplePoints.length * pointDimension);

        } while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon);

        return clusterPoints.length;
    }

    protected double[] initializeClusterPoint(double[][] pointsInCluster)
    {
        // calculate point sum
        double[] clusterPoint = new double[pointDimension];
        for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++)
        {
            addPointValues(clusterPoint, pointsInCluster[numPoint]);
        }

        // calculate average
        multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length);

        return clusterPoint;
    }

    protected double[] createNewClusterPoint(double[] clusterPoint,
            int epsilonFactor)
    {
        double[] newClusterPoint = new double[pointDimension];
        addPointValues(newClusterPoint, clusterPoint);
        multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor
                * epsilon);

        return newClusterPoint;
    }

    protected double calcDist(double[] v1, double[] v2)
    {
        double distSum = 0.0;
        for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
        {
            double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]);
            distSum += absDist * absDist;
        }

        return distSum;
    }

    protected void addPointValues(double[] v1, double[] v2)
    {
        for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
        {
            v1[pointIdx] += v2[pointIdx];
        }
    }

    protected void multiplyPointValues(double[] v1, double f)
    {
        for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
        {
            v1[pointIdx] *= f;
        }
    }

    public static void main(String[] args)
    {
        ArrayList points = new ArrayList();

        // points.add(arrayOf(-1.5, -1.5));
        points.add(arrayOf(-1.5, 2.0, 5.0));
        points.add(arrayOf(-2.0, -2.0, 0.0));
        points.add(arrayOf(1.0, 1.0, 2.0));
        points.add(arrayOf(1.5, 1.5, 1.2));
        points.add(arrayOf(1.0, 2.0, 5.6));
        points.add(arrayOf(1.0, -2.0, -2.0));
        points.add(arrayOf(1.0, -3.0, -2.0));
        points.add(arrayOf(1.0, -2.5, -4.5));

        GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2]));

        double[][] results = gl.getClusterPoints(4);
        for (double[] point : results)
        {
            System.out.println("Cluster " + point[0] + ", " + point[1] + ", "
                    + point[2]);
        }
    }

    private static double[] arrayOf(double x, double y, double z)
    {
        double[] a = new double[3];
        a[0] = x;
        a[1] = y;
        a[2] = z;

        return a;
    }
}


Output:

Cluster -2.0, -2.0, 0.0
Cluster 1.0, -2.5, -2.833333333333333
Cluster 1.25, 1.25, 1.6
Cluster -0.25, 2.0, 5.3



More Java Programs:


















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...