Code:
import java.util.ArrayList;
public class GenLloyd
{
protected double[][] samplePoints;
protected double[][] clusterPoints;
int[] pointApproxIndices;
int pointDimension = 0;
protected double epsilon = 0.0005;
protected double avgDistortion = 0.0;
/**
* Create Generalized Lloyd object with an array of sample points
*/
public GenLloyd(double[][] samplePoints)
{
this.setSamplePoints(samplePoints);
}
/**
* Return epsilon parameter (accuracy)
*/
public double getEpsilon()
{
return epsilon;
}
/**
* Set epsilon parameter (accuracy). Should be a small number 0.0 < epsilon
* < 0.1
*/
public void setEpsilon(double epsilon)
{
this.epsilon = epsilon;
}
/**
* Set array of sample points
*/
public void setSamplePoints(double[][] samplePoints)
{
if (samplePoints.length > 0)
{
this.samplePoints = samplePoints;
this.pointDimension = samplePoints[0].length;
}
}
/**
* Get array of sample points
*/
public double[][] getSamplePoints()
{
return samplePoints;
}
/**
* Get calculated cluster points.
* calculated and returned
*/
public double[][] getClusterPoints(int numClusters)
{
this.calcClusters(numClusters);
return clusterPoints;
}
protected void calcClusters(int numClusters)
{
// initialize with first cluster
clusterPoints = new double[1][pointDimension];
double[] newClusterPoint = initializeClusterPoint(samplePoints);
clusterPoints[0] = newClusterPoint;
if (numClusters > 1)
{
// calculate initial average distortion
avgDistortion = 0.0;
for (double[] samplePoint : samplePoints)
{
avgDistortion += calcDist(samplePoint, newClusterPoint);
}
avgDistortion /= (double) (samplePoints.length * pointDimension);
// set up array of point approximization indices
pointApproxIndices = new int[samplePoints.length];
// split the clusters
int i = 1;
do
{
i = splitClusters();
} while (i < numClusters);
}
}
protected int splitClusters()
{
int newClusterPointSize = 2;
if (clusterPoints.length != 1)
{
newClusterPointSize = clusterPoints.length * 2;
}
// split clusters
double[][] newClusterPoints = new double[newClusterPointSize][pointDimension];
int newClusterPointIdx = 0;
for (double[] clusterPoint : clusterPoints)
{
newClusterPoints[newClusterPointIdx] = createNewClusterPoint(
clusterPoint, -1);
newClusterPoints[newClusterPointIdx + 1] = createNewClusterPoint(
clusterPoint, +1);
newClusterPointIdx += 2;
}
clusterPoints = newClusterPoints;
// iterate to approximate cluster points
// int iteration = 0;
double curAvgDistortion = 0.0;
do
{
curAvgDistortion = avgDistortion;
// find the min values
for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
{
double minDist = Double.MAX_VALUE;
for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++)
{
double newMinDist = calcDist(samplePoints[pointIdx],
clusterPoints[clusterPointIdx]);
if (newMinDist < minDist)
{
minDist = newMinDist;
pointApproxIndices[pointIdx] = clusterPointIdx;
}
}
}
// update codebook
for (int clusterPointIdx = 0; clusterPointIdx < clusterPoints.length; clusterPointIdx++)
{
double[] newClusterPoint = new double[pointDimension];
int num = 0;
for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
{
if (pointApproxIndices[pointIdx] == clusterPointIdx)
{
addPointValues(newClusterPoint, samplePoints[pointIdx]);
num++;
}
}
if (num > 0)
{
multiplyPointValues(newClusterPoint, 1.0 / (double) num);
clusterPoints[clusterPointIdx] = newClusterPoint;
}
}
// update average distortion
avgDistortion = 0.0;
for (int pointIdx = 0; pointIdx < samplePoints.length; pointIdx++)
{
avgDistortion += calcDist(samplePoints[pointIdx],
clusterPoints[pointApproxIndices[pointIdx]]);
}
avgDistortion /= (double) (samplePoints.length * pointDimension);
} while (((curAvgDistortion - avgDistortion) / curAvgDistortion) > epsilon);
return clusterPoints.length;
}
protected double[] initializeClusterPoint(double[][] pointsInCluster)
{
// calculate point sum
double[] clusterPoint = new double[pointDimension];
for (int numPoint = 0; numPoint < pointsInCluster.length; numPoint++)
{
addPointValues(clusterPoint, pointsInCluster[numPoint]);
}
// calculate average
multiplyPointValues(clusterPoint, 1.0 / (double) pointsInCluster.length);
return clusterPoint;
}
protected double[] createNewClusterPoint(double[] clusterPoint,
int epsilonFactor)
{
double[] newClusterPoint = new double[pointDimension];
addPointValues(newClusterPoint, clusterPoint);
multiplyPointValues(newClusterPoint, 1.0 + (double) epsilonFactor
* epsilon);
return newClusterPoint;
}
protected double calcDist(double[] v1, double[] v2)
{
double distSum = 0.0;
for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
{
double absDist = Math.abs(v1[pointIdx] - v2[pointIdx]);
distSum += absDist * absDist;
}
return distSum;
}
protected void addPointValues(double[] v1, double[] v2)
{
for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
{
v1[pointIdx] += v2[pointIdx];
}
}
protected void multiplyPointValues(double[] v1, double f)
{
for (int pointIdx = 0; pointIdx < v1.length; pointIdx++)
{
v1[pointIdx] *= f;
}
}
public static void main(String[] args)
{
ArrayList
// points.add(arrayOf(-1.5, -1.5));
points.add(arrayOf(-1.5, 2.0, 5.0));
points.add(arrayOf(-2.0, -2.0, 0.0));
points.add(arrayOf(1.0, 1.0, 2.0));
points.add(arrayOf(1.5, 1.5, 1.2));
points.add(arrayOf(1.0, 2.0, 5.6));
points.add(arrayOf(1.0, -2.0, -2.0));
points.add(arrayOf(1.0, -3.0, -2.0));
points.add(arrayOf(1.0, -2.5, -4.5));
GenLloyd gl = new GenLloyd(points.toArray(new double[points.size()][2]));
double[][] results = gl.getClusterPoints(4);
for (double[] point : results)
{
System.out.println("Cluster " + point[0] + ", " + point[1] + ", "
+ point[2]);
}
}
private static double[] arrayOf(double x, double y, double z)
{
double[] a = new double[3];
a[0] = x;
a[1] = y;
a[2] = z;
return a;
}
}
Output:
Cluster -2.0, -2.0, 0.0
Cluster 1.0, -2.5, -2.833333333333333
Cluster 1.25, 1.25, 1.6
Cluster -0.25, 2.0, 5.3
More Java Programs: