Code:
package com.executecodes.graph;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Scanner;
import java.util.Stack;
class VCBag
{
private int N; // number of elements in VCBag
private Node
// helper linked list class
private static class Node
{
private Item item;
private Node
}
public VCBag()
{
first = null;
N = 0;
}
public boolean isEmpty()
{
return first == null;
}
public int size()
{
return N;
}
public void add(Item item)
{
Node
first = new Node
first.item = item;
first.next = oldfirst;
N++;
}
public Iterator
{
return new ListIterator
}
// an iterator, doesn't implement remove() since it's optional
@SuppressWarnings("hiding")
private class ListIterator
{
private Node
public ListIterator(Node
{
current = first;
}
public boolean hasNext()
{
return current != null;
}
public void remove()
{
throw new UnsupportedOperationException();
}
public Item next()
{
if (!hasNext())
throw new NoSuchElementException();
Item item = current.item;
current = current.next;
return item;
}
}
}
class VCGraph
{
private final int V;
private int E;
private VCBag
@SuppressWarnings("unchecked")
public VCGraph(int V)
{
if (V < 0)
throw new IllegalArgumentException(
"Number of vertices must be nonnegative");
this.V = V;
this.E = 0;
adj = (VCBag
for (int v = 0; v < V; v++)
{
adj[v] = new VCBag
}
System.out.println("Enter the number of edges: ");
Scanner sc = new Scanner(System.in);
int E = sc.nextInt();
if (E < 0)
{
sc.close();
throw new IllegalArgumentException(
"Number of edges must be nonnegative");
}
System.out.println("Enter the edges:
for (int i = 0; i < E; i++)
{
int v = sc.nextInt();
int w = sc.nextInt();
addEdge(v, w);
}
sc.close();
}
public VCGraph(VCGraph G)
{
this(G.V());
this.E = G.E();
for (int v = 0; v < G.V(); v++)
{
// reverse so that adjacency list is in same order as original
Stack
for (int w : G.adj[v])
{
reverse.push(w);
}
for (int w : reverse)
{
adj[v].add(w);
}
}
}
public int V()
{
return V;
}
public int E()
{
return E;
}
public void addEdge(int v, int w)
{
if (v < 0 || v >= V)
throw new IndexOutOfBoundsException();
if (w < 0 || w >= V)
throw new IndexOutOfBoundsException();
E++;
adj[v].add(w);
adj[w].add(v);
}
public Iterable
{
if (v < 0 || v >= V)
throw new IndexOutOfBoundsException();
return adj[v];
}
public String toString()
{
StringBuilder s = new StringBuilder();
String NEWLINE = System.getProperty("line.separator");
s.append(V + " vertices, " + E + " edges " + NEWLINE);
for (int v = 0; v < V; v++)
{
s.append(v + ": ");
for (int w : adj[v])
{
s.append(w + " ");
}
s.append(NEWLINE);
}
return s.toString();
}
}
public class VertexConnectivity
{
private int[] low;
private int[] pre;
private int cnt;
private boolean[] articulation;
public VertexConnectivity(VCGraph G)
{
low = new int[G.V()];
pre = new int[G.V()];
articulation = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
low[v] = -1;
for (int v = 0; v < G.V(); v++)
pre[v] = -1;
for (int v = 0; v < G.V(); v++)
if (pre[v] == -1)
dfs(G, v, v);
}
private void dfs(VCGraph G, int u, int v)
{
int children = 0;
pre[v] = cnt++;
low[v] = pre[v];
for (int w : G.adj(v))
{
if (pre[w] == -1)
{
children++;
dfs(G, v, w);
// update low number
low[v] = Math.min(low[v], low[w]);
// non-root of DFS is an articulation point if low[w] >= pre[v]
if (low[w] >= pre[v] && u != v)
articulation[v] = true;
}
// update low number - ignore reverse of edge leading to v
else if (w != u)
low[v] = Math.min(low[v], pre[w]);
}
// root of DFS is an articulation point if it has more than 1 child
if (u == v && children > 1)
articulation[v] = true;
}
// is vertex v an articulation point?
public boolean isArticulation(int v)
{
return articulation[v];
}
// test client
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of vertices: ");
VCGraph G = new VCGraph(sc.nextInt());
System.out.println(G);
VertexConnectivity bic = new VertexConnectivity(G);
int count = 0;
for (int v = 0; v < G.V(); v++)
if (bic.isArticulation(v))
count++;
System.out.println("Vertex Connectivity: " + count);
sc.close();
}
}
Output:
Enter the number of vertices:
6
Enter the number of edges:
7
Enter the edges:
0 1
1 2
1 3
3 4
4 5
5 3
5 2
6 vertices, 7 edges
0: 1
1: 3 2 0
2: 5 1
3: 5 4 1
4: 5 3
5: 2 3 4
Vertex Connectivity: 1
More Java Programs: