Tuesday, 28 November 2017

Java Program to Find Shortest Path Between All Vertices Using Floyd-Warshall’s Algorithm


Code:

package com.executecodes.graph;

import java.util.Scanner;

public class FloydWarshallShortestPath
{
    private int             distancematrix[][];
    private int             numberofvertices;
    public static final int INFINITY = 999;

    public FloydWarshallShortestPath(int numberofvertices)
    {
        distancematrix = new int[numberofvertices + 1][numberofvertices + 1];
        this.numberofvertices = numberofvertices;
    }

    public void floydwarshall(int adjacencymatrix[][])
    {
        for (int source = 1; source <= numberofvertices; source++)
        {
            for (int destination = 1; destination <= numberofvertices; destination++)
            {
                distancematrix[source][destination] = adjacencymatrix[source][destination];
            }
        }
        for (int intermediate = 1; intermediate <= numberofvertices; intermediate++)
        {
            for (int source = 1; source <= numberofvertices; source++)
            {
                for (int destination = 1; destination <= numberofvertices; destination++)
                {
                    if (distancematrix[source][intermediate]
                            + distancematrix[intermediate][destination] < distancematrix[source][destination])
                        distancematrix[source][destination] = distancematrix[source][intermediate]
                                + distancematrix[intermediate][destination];
                }
            }
        }
        for (int source = 1; source <= numberofvertices; source++)
            System.out.print("\t" + source);
        System.out.println();
        for (int source = 1; source <= numberofvertices; source++)
        {
            System.out.print(source + "\t");
            for (int destination = 1; destination <= numberofvertices; destination++)
            {
                System.out.print(distancematrix[source][destination] + "\t");
            }
            System.out.println();
        }
    }

    public static void main(String... arg)
    {
        int adjacency_matrix[][];
        int numberofvertices;
        Scanner scan = new Scanner(System.in);
        System.out.println("Enter the number of vertices");
        numberofvertices = scan.nextInt();
        adjacency_matrix = new int[numberofvertices + 1][numberofvertices + 1];
        System.out.println("Enter the Weighted Matrix for the graph");
        for (int source = 1; source <= numberofvertices; source++)
        {
            for (int destination = 1; destination <= numberofvertices; destination++)
            {
                adjacency_matrix[source][destination] = scan.nextInt();
                if (source == destination)
                {
                    adjacency_matrix[source][destination] = 0;
                    continue;
                }
                if (adjacency_matrix[source][destination] == 0)
                {
                    adjacency_matrix[source][destination] = INFINITY;
                }
            }
        }
        System.out.println("The Transitive Closure of the Graph");
        FloydWarshallShortestPath floydwarshall = new FloydWarshallShortestPath(
                numberofvertices);
        floydwarshall.floydwarshall(adjacency_matrix);
        scan.close();
    }
}


Output:

Enter the number of vertices
6
Enter the Weighted Matrix for the graph
0 4 0 0 1 0
0 0 1 0 2 0
0 0 0 0 0 0 
0 0 0 0 0 0
0 0 0 5 0 3
0 0 0 0 0 0
The Transitive Closure of the Graph (999 represents not reachable)
1 2 3 4 5 6
1 0 4 5 6 1 4
2 999 0 1 7 2 5
3 999 999 0 999 999 999
4 999 999 999 0 999 999
5 999 999 999 5 0 3
6 999 999 999 999 999 0



More Java Programs:



















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...