Monday, 27 November 2017

Java Program to Find MST(Minimum Spanning Tree) using Kruskal’s Algorithm


Code:

import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;

public class KruskalAlgorithm
{
    private List edges;
    private int numberOfVertices;
    public static final int MAX_VALUE = 999;
    private int visited[];
    private int spanning_tree[][];

    public KruskalAlgorithm(int numberOfVertices)
    {
        this.numberOfVertices = numberOfVertices;
        edges = new LinkedList();
        visited = new int[this.numberOfVertices + 1];
        spanning_tree = new int[numberOfVertices + 1][numberOfVertices + 1];
    }

    public void kruskalAlgorithm(int adjacencyMatrix[][])
    {
        boolean finished = false;
        for (int source = 1; source <= numberOfVertices; source++)
        {
            for (int destination = 1; destination <= numberOfVertices; destination++)
            {
                if (adjacencyMatrix[source][destination] != MAX_VALUE && source != destination)
                {
                    Edge edge = new Edge();
                    edge.sourcevertex = source;
                    edge.destinationvertex = destination;
                    edge.weight = adjacencyMatrix[source][destination];
                    adjacencyMatrix[destination][source] = MAX_VALUE;
                    edges.add(edge);
                }
            }
        }
        Collections.sort(edges, new EdgeComparator());
        CheckCycle checkCycle = new CheckCycle();
        for (Edge edge : edges)
        {
            spanning_tree[edge.sourcevertex][edge.destinationvertex] = edge.weight;
            spanning_tree[edge.destinationvertex][edge.sourcevertex] = edge.weight;
            if (checkCycle.checkCycle(spanning_tree, edge.sourcevertex))
            {
                spanning_tree[edge.sourcevertex][edge.destinationvertex] = 0;
                spanning_tree[edge.destinationvertex][edge.sourcevertex] = 0;
                edge.weight = -1;
                continue;
            }
            visited[edge.sourcevertex] = 1;
            visited[edge.destinationvertex] = 1;
            for (int i = 0; i < visited.length; i++)
            {
                if (visited[i] == 0)
                {
                    finished = false;
                    break;
                } else
                {
                    finished = true;
                }
            }
            if (finished)
                break;
        }
        System.out.println("The spanning tree is ");
        for (int i = 1; i <= numberOfVertices; i++)
            System.out.print("\t" + i);
        System.out.println();
        for (int source = 1; source <= numberOfVertices; source++)
        {
            System.out.print(source + "\t");
            for (int destination = 1; destination <= numberOfVertices; destination++)
            {
                System.out.print(spanning_tree[source][destination] + "\t");
            }
            System.out.println();
        }
    }

    public static void main(String... arg)
    {
        int adjacency_matrix[][];
        int number_of_vertices;

        Scanner scan = new Scanner(System.in);
        System.out.println("Enter the number of vertices");
        number_of_vertices = scan.nextInt();
        adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];

        System.out.println("Enter the Weighted Matrix for the graph");
        for (int i = 1; i <= number_of_vertices; i++)
        {
            for (int j = 1; j <= number_of_vertices; j++)
            {
                adjacency_matrix[i][j] = scan.nextInt();
                if (i == j)
                {
                    adjacency_matrix[i][j] = 0;
                    continue;
                }
                if (adjacency_matrix[i][j] == 0)
                {
                    adjacency_matrix[i][j] = MAX_VALUE;
                }
            }
        }
        KruskalAlgorithm kruskalAlgorithm = new KruskalAlgorithm(number_of_vertices);
        kruskalAlgorithm.kruskalAlgorithm(adjacency_matrix);
        scan.close();
    }
}

class Edge
{
    int sourcevertex;
    int destinationvertex;
    int weight;
}

class EdgeComparator implements Comparator
{
    @Override
    public int compare(Edge edge1, Edge edge2)
    {
        if (edge1.weight < edge2.weight)
            return -1;
        if (edge1.weight > edge2.weight)
            return 1;
        return 0;
    }
}

class CheckCycle
{
    private Stack stack;
    private int adjacencyMatrix[][];

    public CheckCycle()
    {
        stack = new Stack();
    }

    public boolean checkCycle(int adjacency_matrix[][], int source)
    {
        boolean cyclepresent = false;
        int number_of_nodes = adjacency_matrix[source].length - 1;

        adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
        for (int sourcevertex = 1; sourcevertex <= number_of_nodes; sourcevertex++)
        {
            for (int destinationvertex = 1; destinationvertex <= number_of_nodes; destinationvertex++)
            {
                adjacencyMatrix[sourcevertex][destinationvertex] = adjacency_matrix[sourcevertex[destinationvertex];
            }
         }

         int visited[] = new int[number_of_nodes + 1];
         int element = source;
         int i = source;
         visited[source] = 1;
         stack.push(source);

         while (!stack.isEmpty())
         {
             element = stack.peek();
             i = element;
             while (i <= number_of_nodes)
             {
                 if (adjacencyMatrix[element][i] >= 1 && visited[i] == 1)
                 {
                     if (stack.contains(i))
                     {
                         cyclepresent = true;
                         return cyclepresent;
                     }
                 }
                 if (adjacencyMatrix[element][i] >= 1 && visited[i] == 0)
                 {
                     stack.push(i);
                     visited[i] = 1;
                     adjacencyMatrix[element][i] = 0;// mark as labelled;
                     adjacencyMatrix[i][element] = 0;
                     element = i;
                     i = 1;
                     continue;
                  }
                  i++;
             }
             stack.pop();
        }
        return cyclepresent;
    }
}


Output:

Enter the number of vertices
6
Enter the Weighted Matrix for the graph
0 6 8 6 0 0
6 0 0 5 10 0
8 0 0 7 5 3
6 5 7 0 0 0
0 10 5 0 0 3
0 0 3 0 3 0
The spanning tree is 
1 2 3 4 5 6
1 0 6 0 0 0 0
2 6 0 0 5 0 0
3 0 0 0 7 0 3
4 0 5 7 0 0 0
5 0 0 0 0 0 3
6 0 0 3 0 3 0




More Java Programs:



















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...