Tuesday, 28 November 2017

Java Program to Check Whether a Weak Link i.e. Articulation Vertex Exists in a Graph or Check Whether G is Biconnected or Not


Code:

package com.executecodes.graph;

import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Scanner;
import java.util.Stack;

class Bag implements Iterable
{
    private int        N;    // number of elements in bag
    private Node first;    // beginning of bag

    // helper linked list class
    private static class Node
    {
        private Item       item;
        private Node next;
    }

    public Bag()
    {
        first = null;
        N = 0;
    }

    public boolean isEmpty()
    {
        return first == null;
    }

    public int size()
    {
        return N;
    }

    public void add(Item item)
    {
        Node oldfirst = first;
        first = new Node();
        first.item = item;
        first.next = oldfirst;
        N++;
    }

    public Iterator iterator()
    {
        return new ListIterator(first);
    }

    // an iterator, doesn't implement remove() since it's optional
    private class ListIterator implements Iterator
    {
        private Node current;

        public ListIterator(Node first)
        {
            current = first;
        }

        public boolean hasNext()
        {
            return current != null;
        }

        public void remove()
        {
            throw new UnsupportedOperationException();
        }

        public Item next()
        {
            if (!hasNext())
                throw new NoSuchElementException();
            Item item = current.item;
            current = current.next;
            return item;
        }
    }
}

class APGraph
{
    private final int      V;
    private int            E;
    private Bag[] adj;

    public APGraph(int V)
    {
        if (V < 0)
            throw new IllegalArgumentException(
                    "Number of vertices must be nonnegative");
        this.V = V;
        this.E = 0;
        adj = (Bag[]) new Bag[V];
        for (int v = 0; v < V; v++)
        {
            adj[v] = new Bag();
        }
        System.out.println("Enter the number of edges: ");
        Scanner sc = new Scanner(System.in);
        int E = sc.nextInt();
        if (E < 0)
        {
            sc.close();
            throw new IllegalArgumentException(
                    "Number of edges must be nonnegative");
        }
        for (int i = 0; i < E; i++)
        {
            int v = sc.nextInt();
            int w = sc.nextInt();
            addEdge(v, w);
        }
        sc.close();
    }

    public APGraph(APGraph G)
    {
        this(G.V());
        this.E = G.E();
        for (int v = 0; v < G.V(); v++)
        {
            // reverse so that adjacency list is in same order as original
            Stack reverse = new Stack();
            for (int w : G.adj[v])
            {
                reverse.push(w);
            }
            for (int w : reverse)
            {
                adj[v].add(w);
            }
        }
    }

    public int V()
    {
        return V;
    }

    public int E()
    {
        return E;
    }

    public void addEdge(int v, int w)
    {
        if (v < 0 || v >= V)
            throw new IndexOutOfBoundsException();
        if (w < 0 || w >= V)
            throw new IndexOutOfBoundsException();
        E++;
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable adj(int v)
    {
        if (v < 0 || v >= V)
            throw new IndexOutOfBoundsException();
        return adj[v];
    }

    public String toString()
    {
        StringBuilder s = new StringBuilder();
        String NEWLINE = System.getProperty("line.separator");
        s.append(V + " vertices, " + E + " edges " + NEWLINE);
        for (int v = 0; v < V; v++)
        {
            s.append(v + ": ");
            for (int w : adj[v])
            {
                s.append(w + " ");
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }
}

public class ArticulationPoints
{
    private int[]     low;
    private int[]     pre;
    private int       cnt;
    private boolean[] articulation;

    public ArticulationPoints(APGraph G)
    {
        low = new int[G.V()];
        pre = new int[G.V()];
        articulation = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            low[v] = -1;
        for (int v = 0; v < G.V(); v++)
            pre[v] = -1;
        for (int v = 0; v < G.V(); v++)
            if (pre[v] == -1)
                dfs(G, v, v);
    }

    private void dfs(APGraph G, int u, int v)
    {
        int children = 0;
        pre[v] = cnt++;
        low[v] = pre[v];
        for (int w : G.adj(v))
        {
            if (pre[w] == -1)
            {
                children++;
                dfs(G, v, w);
                // update low number
                low[v] = Math.min(low[v], low[w]);
                // non-root of DFS is an articulation point if low[w] >= pre[v]
                if (low[w] >= pre[v] && u != v)
                    articulation[v] = true;
            }
            // update low number - ignore reverse of edge leading to v
            else if (w != u)
                low[v] = Math.min(low[v], pre[w]);
        }
        // root of DFS is an articulation point if it has more than 1 child
        if (u == v && children > 1)
            articulation[v] = true;
    }

    // is vertex v an articulation point?
    public boolean isArticulation(int v)
    {
        return articulation[v];
    }

    // test client
    public static void main(String[] args)
    {
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter the number of vertices: ");
        APGraph G = new APGraph(sc.nextInt());
        System.out.println(G);
        ArticulationPoints bic = new ArticulationPoints(G);
        System.out.println("Atriculation points: ");
        for (int v = 0; v < G.V(); v++)
            if (bic.isArticulation(v))
                System.out.println(v);
        sc.close();
    }
}


Output:

Enter the number of vertices: 
6
Enter the number of edges: 
7

0 1
1 2
1 3
3 4
4 5
5 3
5 2
6 vertices, 7 edges 
0: 1 
1: 3 2 0 
2: 5 1 
3: 5 4 1 
4: 5 3 
5: 2 3 4 

Atriculation points: 
1



More Java Programs:


















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...