Code:
// C++ program Miller-Rabin primality test
#include
using namespace std;
// Utility function to do modular exponentiation.
// It returns (x^y) % p
int power(int x, unsigned int y, int p)
{
int res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// This function is called for all k trials. It returns
// false if n is composite and returns false if n is
// probably prime.
// d is an odd number such that d*2r = n-1
// for some r >= 1
bool miillerTest(int d, int n)
{
// Pick a random number in [2..n-2]
// Corner cases make sure that n > 4
int a = 2 + rand() % (n - 4);
// Compute a^d % n
int x = power(a, d, n);
if (x == 1 || x == n-1)
return true;
// Keep squaring x while one of the following doesn't
// happen
// (i) d does not reach n-1
// (ii) (x^2) % n is not 1
// (iii) (x^2) % n is not n-1
while (d != n-1)
{
x = (x * x) % n;
d *= 2;
if (x == 1) return false;
if (x == n-1) return true;
}
// Return composite
return false;
}
// It returns false if n is composite and returns true if n
// is probably prime. k is an input parameter that determines
// accuracy level. Higher value of k indicates more accuracy.
bool isPrime(int n, int k)
{
// Corner cases
if (n <= 1 || n == 4) return false;
if (n <= 3) return true;
// Find r such that n = 2^d * r + 1 for some r >= 1
int d = n - 1;
while (d % 2 == 0)
d /= 2;
// Iterate given nber of 'k' times
for (int i = 0; i < k; i++)
if (miillerTest(d, n) == false)
return false;
return true;
}
// Driver program
int main()
{
int k = 4; // Number of iterations
cout << "All primes smaller than 100: \n";
for (int n = 1; n < 100; n++)
if (isPrime(n, k))
cout << n << " ";
return 0;
}
Output:
All primes smaller than 100:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
61 67 71 73 79 83 89 97
More C++ Programs: