Friday, 24 November 2017

C++ Program to Implement the Vizing’s Theorem


Code:

#include    iostream

using namespace std;

// A function to color edges of the graph.
void EdgeColoring(int edge[][3], int e)
{
int i, col, j;
// Loop to assign a valid color to every edge 'i'.
for(i = 0; i < e; i++)
{
col = 1;
flag:
// Assign a color and then check its validity.
edge[i][2] = col;
for(j = 0; j < e; j++)
{
if(j == i)
continue;

// Check the colors of the edges adjacent to the edge i.
if(edge[j][0] == edge[i][0] || edge[j][0] == edge[i][1] || edge[j][1] == edge[i][0] || edge[j][1] == edge[i][1])
{
// If the color matches then goto line 11 and assign next color to the edge and check again.
if(edge[j][2] == edge[i][2])
{
col++;
goto flag;
}
}
}
}
}

int main()
{
int i, v, e, j, max = -1;

// take the input of the number of vertex and edges.
cout<<"Enter the number of vertexes of the graph: ";
cin>>v;
cout<<"Enter the number of edges of the graph: ";
cin>>e;
int edge[e][3], degree[v+1] = {0};

// Take the input of the adjacent vertex pairs of the given graph.
for(i = 0; i < e; i++)
{
cout<<"\nEnter the vertex pair for edge "<
cout<<"\nV(1): ";
cin>>edge[i][0];
cout<<"V(2): ";
cin>>edge[i][1];

edge[i][2] = -1;
degree[edge[i][0]]++;
degree[edge[i][1]]++;
}

// Find the maximum degree.
for(i = 1; i <= v; i++)
{
if(max < degree[i])
max = degree[i];
}

// Color the edges of the graph.
EdgeColoring(edge , e);

cout<<"\nAccording to Vizing's theorem this graph can use a maximum of "<

for(i = 0; i < e; i++)
cout<<"\nThe color of the edge between vertex V(1):"<
}


Output:

Case 1:
Enter the number of vertexes of the graph: 4
Enter the number of edges of the graph: 5

Enter the vertex pair for edge 1
V(1): 1
V(2): 2

Enter the vertex pair for edge 2
V(1): 2
V(2): 3

Enter the vertex pair for edge 3
V(1): 3
V(2): 4

Enter the vertex pair for edge 4
V(1): 4
V(2): 1

Enter the vertex pair for edge 5
V(1): 1
V(2): 3

According to Vizing's theorem, this graph can use a maximum of 4 colors to generate a valid edge coloring


The color of the edge between vertex V(1):1 and V(2): 2 is: color1.
The color of the edge between vertex V(1):2 and V(2): 3 is: color2.
The color of the edge between vertex V(1):3 and V(2): 4 is: color1.
The color of the edge between vertex V(1):4 and V(2): 1 is: color2.
The color of the edge between vertex V(1):1 and V(2): 3 is: color3.

Case 2:
Enter the number of vertexes of the graph: 3
Enter the number of edges of the graph: 3

Enter the vertex pair for edge 1
V(1): 1
V(2): 2

Enter the vertex pair for edge 2
V(1): 2
V(2): 3

Enter the vertex pair for edge 3
V(1): 3
V(2): 1

According to Vizing's theorem, this graph can use a maximum of 3 colors to generate a valid edge coloring


The color of the edge between vertex V(1):1 and V(2): 2 is: color1.
The color of the edge between vertex V(1):2 and V(2): 3 is: color2.
The color of the edge between vertex V(1):3 and V(2): 1 is: color3.



More C++ Programs:














100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...