Code:
#include stdio.h
#include stdlib.h
#include iostream
using namespace std;
// A utility function to find max of two integers
int max(int x, int y)
{
return (x > y) ? x : y;
}
/* A binary tree node has data, pointer to left child and a pointer to
right child */
struct node
{
int data;
int liss;
struct node *left, *right;
};
// A memoization function returns size of the largest independent set in
// a given binary tree
int LISS(struct node *root)
{
if (root == NULL)
return 0;
if (root->liss)
return root->liss;
if (root->left == NULL && root->right == NULL)
return (root->liss = 1);
// Caculate size excluding the current node
int liss_excl = LISS(root->left) + LISS(root->right);
// Calculate size including the current node
int liss_incl = 1;
if (root->left)
liss_incl += LISS(root->left->left) + LISS(root->left->right);
if (root->right)
liss_incl += LISS(root->right->left) + LISS(root->right->right);
// Return the maximum of two sizes
root->liss = max(liss_incl, liss_excl);
return root->liss;
}
// A utility function to create a node
struct node* newNode(int data)
{
struct node* temp = (struct node *) malloc(sizeof(struct node));
temp->data = data;
temp->left = temp->right = NULL;
temp->liss = 0;
return temp;
}
// Driver program to test above functions
int main()
{
// Let us construct the tree given in the above diagram
struct node *root = newNode(20);
root->left = newNode(8);
root->left->left = newNode(4);
root->left->right = newNode(12);
root->left->right->left = newNode(10);
root->left->right->right = newNode(14);
root->right = newNode(22);
root->right->right = newNode(25);
cout<<"Size of the Largest Independent Set is "<< LISS(root);
return 0;
}
Output:
Size of the Largest Independent Set is 5
------------------
(program exited with code: 0)
Press return to continue
More C++ Programs: