Code:
#include iostream
#include list
#define NIL -1
using namespace std;
// A class that represents an undirected graph
class Graph
{
int V; // No. of vertices
list
bool isBCUtil(int v, bool visited[], int disc[], int low[],
int parent[]);
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // to add an edge to graph
bool isBC(); // returns true if graph is Biconnected
};
Graph::Graph(int V)
{
this->V = V;
adj = new list
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v); // Note: the graph is undirected
}
// A recursive function that returns true if there is an articulation
// point in given graph, otherwise returns false.
// This function is almost same as isAPUtil() here ( http://goo.gl/Me9Fw )
// u --> The vertex to be visited next
// visited[] --> keeps tract of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
bool Graph::isBCUtil(int u, bool visited[], int disc[],int low[],int parent[])
{
// A static variable is used for simplicity, we can avoid use of static
// variable by passing a pointer.
static int time = 0;
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices aadjacent to this
list
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i; // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v])
{
children++;
parent[v] = u;
// check if subgraph rooted with v has an articulation point
if (isBCUtil(v, visited, disc, low, parent))
return true;
// Check if the subtree rooted with v has a connection to
// one of the ancestors of u
low[u] = min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more chilren.
if (parent[u] == NIL && children > 1)
return true;
// (2) If u is not root and low value of one of its child is
// more than discovery value of u.
if (parent[u] != NIL && low[v] >= disc[u])
return true;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u] = min(low[u], disc[v]);
}
return false;
}
// The main function that returns true if graph is Biconnected,
// otherwise false. It uses recursive function isBCUtil()
bool Graph::isBC()
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
int *disc = new int[V];
int *low = new int[V];
int *parent = new int[V];
// Initialize parent and visited, and ap(articulation point)
// arrays
for (int i = 0; i < V; i++)
{
parent[i] = NIL;
visited[i] = false;
}
// Call the recursive helper function to find if there is an articulation
// point in given graph. We do DFS traversal starring from vertex 0
if (isBCUtil(0, visited, disc, low, parent) == true)
return false;
// Now check whether the given graph is connected or not. An undirected
// graph is connected if all vertices are reachable from any starting
// point (we have taken 0 as starting point)
for (int i = 0; i < V; i++)
if (visited[i] == false)
return false;
return true;
}
// Driver program to test above function
int main()
{
// Create graphs given in above diagrams
Graph g1(2);
g1.addEdge(0, 1);
g1.isBC()? cout << "Yes\n" : cout << "No\n";
Graph g2(5);
g2.addEdge(1, 0);
g2.addEdge(0, 2);
g2.addEdge(2, 1);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
g2.addEdge(2, 4);
g2.isBC()? cout << "Yes\n" : cout << "No\n";
Graph g3(3);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.isBC()? cout << "Yes\n" : cout << "No\n";
Graph g4(5);
g4.addEdge(1, 0);
g4.addEdge(0, 2);
g4.addEdge(2, 1);
g4.addEdge(0, 3);
g4.addEdge(3, 4);
g4.isBC()? cout << "Yes\n" : cout << "No\n";
Graph g5(3);
g5.addEdge(0, 1);
g5.addEdge(1, 2);
g5.addEdge(2, 0);
g5.isBC()? cout << "Yes\n" : cout << "No\n";
return 0;
}
Output:
Yes
Yes
No
No
Yes
More C++ Programs: