Saturday, 18 November 2017

C++ Program to Compute Discrete Fourier Transform Using the Fast Fourier Transform Approach


Code:

#include   iostream
#include   complex
#include   cmath
#include   iterator
using namespace std;

unsigned int bitReverse(unsigned int x, int log2n)

{
    int n = 0;
    int mask = 0x1;
    for (int i = 0; i < log2n; i++)

    {
        n <<= 1;
        n |= (x & 1);
        x >>= 1;
    }
    return n;
}
const double PI = 3.1415926536;
template
void fft(Iter_T a, Iter_T b, int log2n)
{
    typedef typename iterator_traits::value_type complex;
    const complex J(0, 1);
    int n = 1 << log2n;
    for (unsigned int i = 0; i < n; ++i)
    {
        b[bitReverse(i, log2n)] = a[i];
    }

    for (int s = 1; s <= log2n; ++s)

    {
        int m = 1 << s;
        int m2 = m >> 1;
        complex w(1, 0);
        complex wm = exp(-J * (PI / m2));
        for (int j = 0; j < m2; ++j)

        {
            for (int k = j; k < n; k += m)

            {
                complex t = w * b[k + m2];
                complex u = b[k];
                b[k] = u + t;
                b[k + m2] = u - t;
            }
            w *= wm;
        }
    }
}
int main(int argc, char **argv)
{
    typedef complex cx;
    cx a[] = { cx(0, 0), cx(1, 1), cx(3, 3), cx(4, 4), cx(4, 4), cx(3, 3), cx(
            1, 1), cx(0, 0) };
    cx b[8];
    fft(a, b, 3);
    for (int i = 0; i < 8; ++i)
        cout << b[i] << "\n";

}


Output:

(16,16)
(-4.82843,-11.6569)
(0,0)
(-0.343146,0.828427)
(0,0)
(0.828427,-0.343146)
(0,0)
(-11.6569,-4.82843)


More C++ Programs:













100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...