Wednesday, 22 November 2017

C++ Program to Check Whether Topological Sorting can be Performed in a Graph


Code:

#include    iostream
#include    list
#include    stack
using namespace std;

// Class to represent a graph
class Graph
{
    int V;    // No. of vertices'

    // Pointer to an array containing adjacency listsList
    list *adj;

    // A function used by topologicalSort
    void topologicalSortUtil(int v, bool visited[], stack &Stack);
public:
    Graph(int V);   // Constructor

     // function to add an edge to graph
    void addEdge(int v, int w);

    // prints a Topological Sort of the complete graph
    void topologicalSort();
};

Graph::Graph(int V)
{
    this->V = V;
    adj = new list[V];
}

void Graph::addEdge(int v, int w)
{
    adj[v].push_back(w); // Add w to v’s list.
}

// A recursive function used by topologicalSort
void Graph::topologicalSortUtil(int v, bool visited[], 
                                stack &Stack)
{
    // Mark the current node as visited.
    visited[v] = true;

    // Recur for all the vertices adjacent to this vertex
    list::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            topologicalSortUtil(*i, visited, Stack);

    // Push current vertex to stack which stores result
    Stack.push(v);
}

// The function to do Topological Sort. It uses recursive 
// topologicalSortUtil()
void Graph::topologicalSort()
{
    stack Stack;

    // Mark all the vertices as not visited
    bool *visited = new bool[V];
    for (int i = 0; i < V; i++)
        visited[i] = false;

    // Call the recursive helper function to store Topological
    // Sort starting from all vertices one by one
    for (int i = 0; i < V; i++)
      if (visited[i] == false)
        topologicalSortUtil(i, visited, Stack);

    // Print contents of stack
    while (Stack.empty() == false)
    {
        cout << Stack.top() << " ";
        Stack.pop();
    }
}

// Driver program to test above functions
int main()
{
    // Create a graph given in the above diagram
    Graph g(6);
    g.addEdge(5, 2);
    g.addEdge(5, 0);
    g.addEdge(4, 0);
    g.addEdge(4, 1);
    g.addEdge(2, 3);
    g.addEdge(3, 1);

    cout << "Following is a Topological Sort of the given graph n";
    g.topologicalSort();

    return 0;
}


Output:

Following is a Topological Sort of the given graph n5 4 2 3 1 0


More C++ Programs:














100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...