Thursday, 23 November 2017

C++ Program to Check if a Given Binary Tree is an AVL Tree or Not


Code:

#include    iostream
#include    cstdlib
using namespace std;

/* Class SBBSTNode */

class SBBSTNode
{
    public:
        int height, data;
        SBBSTNode *left, *right;
        /* Constructor */
        SBBSTNode()
        {
            left = NULL;
            right = NULL;
            data = 0;
            height = 0;
        }

        /* Constructor */
        SBBSTNode(int n)
        {
            left = NULL;
            right = NULL;
            data = n;
            height = 0;
        }
};

/*
 * Class SelfBalancingBinarySearchTree
 */

class SelfBalancingBinarySearchTree
{
    private:
        SBBSTNode *root;
    public:
        /* Constructor */
        SelfBalancingBinarySearchTree()
        {
            root = NULL;
        }

        /* Function to check if tree is empty */
        bool isEmpty()
        {
            return root == NULL;
        }

        /* Make the tree logically empty */
        void makeEmpty()
        {
            root = NULL;
        }

        /* Function to insert data */
        void insert(int data)
        {
            root = insert(data, root);
        }

        /* Function to get height of node */
        int height(SBBSTNode *t)
        {
            return t == NULL ? -1 : t->height;
        }

        /* Function to max of left/right node */
        int max(int lhs, int rhs)
        {
            return lhs > rhs ? lhs : rhs;
        }

        /* Function to insert data recursively */
        SBBSTNode *insert(int x, SBBSTNode *t)
        {
            if (t == NULL)
                t = new SBBSTNode(x);
            else if (x < t->data)
            {
                t->left = insert(x, t->left);
                if (height(t->left) - height(t->right) == 2)
                    if (x < t->left->data)

                        t = rotateWithLeftChild(t);
                    else
                        t = doubleWithLeftChild(t);
            }
            else if (x > t->data)
            {
                t->right = insert(x, t->right);
                if (height(t->right) - height(t->left) == 2)
                    if (x > t->right->data)
                        t = rotateWithRightChild(t);
                    else
                        t = doubleWithRightChild(t);
            }
            t->height = max(height(t->left), height(t->right)) + 1;
            return t;
        }

        /* Rotate binary tree node with left child */
        SBBSTNode *rotateWithLeftChild(SBBSTNode* k2)
        {
            SBBSTNode *k1 = k2->left;
            k2->left = k1->right;
            k1->right = k2;
            k2->height = max(height(k2->left), height(k2->right)) + 1;
            k1->height = max(height(k1->left), k2->height) + 1;
            return k1;
        }

        /* Rotate binary tree node with right child */
        SBBSTNode *rotateWithRightChild(SBBSTNode *k1)
        {
            SBBSTNode *k2 = k1->right;
            k1->right = k2->left;
            k2->left = k1;
            k1->height = max(height(k1->left), height(k1->right)) + 1;
            k2->height = max(height(k2->right), k1->height) + 1;
            return k2;
        }

        /*
         * Double rotate binary tree node: first left child
         * with its right child; then node k3 with new left child
         */
        SBBSTNode *doubleWithLeftChild(SBBSTNode *k3)
        {
            k3->left = rotateWithRightChild(k3->left);
            return rotateWithLeftChild(k3);
        }

        /*
         * Double rotate binary tree node: first right child
         * with its left child; then node k1 with new right child
         */
        SBBSTNode *doubleWithRightChild(SBBSTNode *k1)
        {
            k1->right = rotateWithLeftChild(k1->right);
            return rotateWithRightChild(k1);
        }

        /* Functions to count number of nodes */
        int countNodes()
        {
            return countNodes(root);
        }

        int countNodes(SBBSTNode *r)
        {
            if (r == NULL)
                return 0;
            else
            {
                int l = 1;
                l += countNodes(r->left);
                l += countNodes(r->right);
                return l;
            }
        }

        /* Functions to search for an element */
        bool search(int val)
        {
            return search(root, val);
        }

        bool search(SBBSTNode *r, int val)
        {
            bool found = false;
            while ((r != NULL) && !found)
            {
                int rval = r->data;
                if (val < rval)
                    r = r->left;
                else if (val > rval)
                    r = r->right;
                else
                {
                    found = true;
                    break;
                }
                found = search(r, val);
            }
            return found;
        }

        /* Function for inorder traversal */
        void inorder()
        {
            inorder(root);
        }

        void inorder(SBBSTNode *r)
        {
            if (r != NULL)
            {
                inorder(r->left);
                cout << r->data << "  ";
                inorder(r->right);
            }
        }

        /* Function for preorder traversal */
        void preorder()
        {
            preorder(root);
        }
        void preorder(SBBSTNode *r)
        {
            if (r != NULL)
            {
                cout << r->data << "  ";
                preorder(r->left);
                preorder(r->right);
            }
        }

        /* Function for postorder traversal */
        void postorder()
        {
            postorder(root);
        }
        void postorder(SBBSTNode *r)
        {
            if (r != NULL)
            {
                postorder(r->left);
                postorder(r->right);
                cout << r->data << "  ";
            }
        }
};

int main()
{
    SelfBalancingBinarySearchTree sbbst;
    cout << "SelfBalancingBinarySearchTree Test\n";
    int val;
    char ch;
    /*  Perform tree operations  */
    do
    {
        cout << "\nSelfBalancingBinarySearchTree Operations\n";
        cout << "1. Insert " << endl;
        cout << "2. Count nodes" << endl;
        cout << "3. Search" << endl;
        cout << "4. Check empty" << endl;
        cout << "5. Make empty" << endl;
        int choice;
        cout << "Enter your Choice: ";
        cin >> choice;
        switch (choice)
        {
            case 1:
                cout << "Enter integer element to insert: ";

                cin >> val;
                sbbst.insert(val);
                break;
            case 2:
                cout << "Nodes = " << sbbst.countNodes() << endl;
                break;
            case 3:
                cout << "Enter integer element to search: ";
                cin >> val;

                if (sbbst.search(val))
                    cout << val << " found in the tree" << endl;
                else
                    cout << val << " not found" << endl;
                break;
            case 4:
                cout << "Empty status = ";
                if (sbbst.isEmpty())
                    cout << "Tree is empty" << endl;
                else
                    cout << "Tree is non - empty" << endl;
                break;
            case 5:
                cout << "\nTree cleared\n";
                sbbst.makeEmpty();
                break;
            default:
                cout << "Wrong Entry \n ";
                break;
        }

        /*  Display tree*/
        cout << "\nPost order : ";
        sbbst.postorder();
        cout << "\nPre order : ";
        sbbst.preorder();
        cout << "\nIn order : ";
        sbbst.inorder();
        cout << "\nDo you want to continue (Type y or n): ";
        cin >> ch;
    }
    while (ch == 'Y' || ch == 'y');
    return 0;
}


Output:

SelfBalancingBinarySearchTree Test

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 1
Enter integer element to insert: 5

Post order : 5
Pre order : 5
In order : 5
Do you want to continue (Type y or n): y

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 1
Enter integer element to insert: 8

Post order : 8  5
Pre order : 5  8
In order : 5  8
Do you want to continue (Type y or n): y

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 1
Enter integer element to insert: 24

Post order : 5  24  8
Pre order : 8  5  24
In order : 5  8  24
Do you want to continue (Type y or n): y

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 1
Enter integer element to insert: 6

Post order : 6  5  24  8
Pre order : 8  5  6  24
In order : 5  6  8  24
Do you want to continue (Type y or n): y

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 1
Enter integer element to insert: 10

Post order : 6  5  10  24  8
Pre order : 8  5  6  24  10
In order : 5  6  8  10  24
Do you want to continue (Type y or n): y

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 2
Nodes = 5

Post order : 6  5  10  24  8
Pre order : 8  5  6  24  10
In order : 5  6  8  10  24
Do you want to continue (Type y or n): y

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 3
Enter integer element to search: 6
6 found in the tree

Post order : 6  5  10  24  8
Pre order : 8  5  6  24  10
In order : 5  6  8  10  24
Do you want to continue (Type y or n): y

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 5

Tree cleared

Post order :
Pre order :
In order :
Do you want to continue (Type y or n): y

SelfBalancingBinarySearchTree Operations
1. Insert
2. Count nodes
3. Search
4. Check empty
5. Make empty
Enter your Choice: 4
Empty status = Tree is empty

Post order :
Pre order :
In order :
Do you want to continue (Type y or n): n
------------------
(program exited with code: 0)
Press return to continue



More C++ Programs:

















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...