Wednesday, 22 November 2017

C++ Program to Apply the Prim’s Algorithm to Find the Minimum Spanning Tree of a Graph


Code:

#include    stdio.h
#include    limits.h
#include    iostream

using namespace std;

// Number of vertices in the graph
#define V 5

// A utility function to find the vertex with minimum key value, from
// the set of vertices not yet included in MST
int minKey(int key[], bool mstSet[])
{
    // Initialize min value
    int min = INT_MAX, min_index;

    for (int v = 0; v < V; v++)
    if (mstSet[v] == false && key[v] < min)
    min = key[v], min_index = v;

    return min_index;
}

// A utility function to print the constructed MST stored in parent[]
int printMST(int parent[], int n, int graph[V][V])
{
    cout<<"Edge   Weight\n";
    for (int i = 1; i < V; i++)
        printf("%d - %d    %d \n", parent[i], i, graph[i][parent[i]]);
}

// Function to construct and print MST for a graph represented using adjacency
// matrix representation
void primMST(int graph[V][V])
{
    int parent[V]; // Array to store constructed MST
    int key[V]; // Key values used to pick minimum weight edge in cut
    bool mstSet[V]; // To represent set of vertices not yet included in MST

    // Initialize all keys as INFINITE
    for (int i = 0; i < V; i++)
        key[i] = INT_MAX, mstSet[i] = false;

    // Always include first 1st vertex in MST.
    key[0] = 0; // Make key 0 so that this vertex is picked as first vertex
    parent[0] = -1; // First node is always root of MST

    // The MST will have V vertices
    for (int count = 0; count < V - 1; count++)
    {
        // Pick thd minimum key vertex from the set of vertices
        // not yet included in MST
        int u = minKey(key, mstSet);

        // Add the picked vertex to the MST Set
        mstSet[u] = true;

        // Update key value and parent index of the adjacent vertices of
        // the picked vertex. Consider only those vertices which are not yet
        // included in MST
        for (int v = 0; v < V; v++)

            // graph[u][v] is non zero only for adjacent vertices of m
            // mstSet[v] is false for vertices not yet included in MST
            // Update the key only if graph[u][v] is smaller than key[v]
            if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
                parent[v] = u, key[v] = graph[u][v];
    }

    // print the constructed MST
    printMST(parent, V, graph);
}

// driver program to test above function
int main()
{
    /* Let us create the following graph
     2    3
     (0)--(1)--(2)
     |   / \   |
     6| 8/   \5 |7
     | /     \ |
     (3)-------(4)
     9          */
    int graph[V][V] = { { 0, 2, 0, 6, 0 }, { 2, 0, 3, 8, 5 },
            { 0, 3, 0, 0, 7 }, { 6, 8, 0, 0, 9 }, { 0, 5, 7, 9, 0 }, };

    // Print the solution
    primMST(graph);

    return 0;
}


Output:

Edge   Weight
0 - 1    2 
1 - 2    3 
0 - 3    6 
1 - 4    5 

------------------
(program exited with code: 0)
Press return to continue



More C++ Programs:














100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...