Tuesday, 28 November 2017

Java Program to Solve TSP Using Minimum Spanning Trees


Code:

package com.executecodes.hardgraph;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.StringTokenizer;

public class TSPUsingMST
{
    // Arrays to keep track of info. related to each city
    private String[]   cityName;
    private String[]   cityState;
    private int[]      cityLat;
    private int[]      cityLong;
    private int[]      cityPop;
    // 2-D array to keep track of pairwise distances between cities
    private int[][]    distances;
    // number of cities
    private static int numCities;

    public TSPUsingMST(int n)
    {
        numCities = n;
        // Allotting the space for each 1-D array
        cityName = new String[numCities];
        cityState = new String[numCities];
        cityLat = new int[numCities];
        cityLong = new int[numCities];
        cityPop = new int[numCities];
        // Allocate space for each 2-D array. These arrays have 0 elements in
        // row 0,
        // 1 element in row 1, 2 elements in row 2, etc.
        distances = new int[numCities][];
        for (int i = 0; i < numCities; i++)
            distances[i] = new int[i];
        try
        {
            // Construct a buffered reader object and connect it to the files
            // "miles.dat"
            BufferedReader in = new BufferedReader(new FileReader("miles.dat"));
            // A counter that keeps track of the index of the current city being
            // read
            int cityNumber = 0;
            // While-loop for reading in data from "miles.dat." At the beginning
            // of the while-loop
            // the expectation is that we'll be reading a line containing the
            // city name. Instead,
            // if we encounter a line that starts with "*" then we skip to the
            // next line
            while (cityNumber < numCities)
            {
                // Read in a line
                String line = in.readLine();
                // Skip the rest of the loop if line starts with a "*"
                if (line.charAt(0) == '*')
                    continue;
                // Otherwise tokenize the line
                StringTokenizer tokenizedLine = new StringTokenizer(line, ",[]");
                // Putting actual data into correct position in the array
                cityName[cityNumber] = tokenizedLine.nextToken();
                cityState[cityNumber] = (tokenizedLine.nextToken()).trim(); // trim()
                                                                            // gets
                                                                            // rid
                                                                            // of
                                                                            // leading/trailing
                                                                            // blanks
                cityLat[cityNumber] = Integer.parseInt(tokenizedLine
                        .nextToken());
                cityLong[cityNumber] = Integer.parseInt(tokenizedLine
                        .nextToken());
                cityPop[cityNumber] = Integer.parseInt(tokenizedLine
                        .nextToken());
                // while loop to put distances in the array; this may need to
                // read several lines
                int mileNumber = 0;
                while (mileNumber < cityNumber)
                {
                    // Read a mileage line and tokenize it
                    String mileage = in.readLine();
                    StringTokenizer tokenizedMileage = new StringTokenizer(
                            mileage, " ");
                    // Read all the mileage data in this line into row
                    // cityNumber; increment
                    // mileNumber after each read
                    while (tokenizedMileage.hasMoreTokens())
                    {
                        distances[cityNumber][cityNumber - mileNumber - 1] = Integer
                                .parseInt(tokenizedMileage.nextToken());
                        mileNumber++;
                    }
                } // end of while reading distances
                cityNumber++;
            } // end of while reading cities
            in.close();
        } // end of try
        catch (IOException e)
        {
            System.out.println("File not found.");
        }
    } // end of TSPTester() constructor

    // A simple getIndex method to help test the constructor
    int getIndex(String city, String state)
    {
        int location;
        for (location = 0; location < numCities; location++)
            if ((cityName[location].equals(city))
                    && (cityState[location].equals(state)))
                return location;
        return -1;
    }

    // Print information about a city, given a city index
    void printCityInfo(int index)
    {
        System.out
                .println(cityName[index] + " " + cityState[index] + " "
                        + cityLat[index] + " " + cityLong[index] + " "
                        + cityPop[index]);
    }

    // Print distance information between a given pair of cities
    void printDistanceInfo(int i, int j)
    {
        if (i < j)
            System.out.println(distances[j][i]);
        else
            System.out.println(distances[i][j]);
    }

    int getDistance(int i, int j)
    {
        if (i < j)
            return distances[j][i];
        else if (j < i)
            return distances[i][j];
        else
            return 0;
    }

    int[] greedyTSP()
    {
        // Find a cheapest triangle
        // Load triangle 0-1-2 into the the first 3 slots of the greedy array
        int[] greedy = new int[numCities];
        int currentDistance;
        greedy[0] = 0;
        greedy[1] = 1;
        greedy[2] = 2;
        int currentBestDistance = getDistance(0, 1) + getDistance(1, 2)
                + getDistance(2, 0);
        for (int i = 0; i < numCities; i++)
            for (int j = 0; j < i; j++)
                for (int k = 0; k < j; k++)
                    if ((currentDistance = getDistance(i, j)
                            + getDistance(j, k) + getDistance(i, k)) < currentBestDistance)
                    {
                        greedy[0] = i;
                        greedy[1] = j;
                        greedy[2] = k;
                        currentBestDistance = currentDistance;
                    }
        // Try greedily to add a city that yields the smallest increase
        // in the cost of the tour
        int partialTourSize = 3;
        boolean[] visited = new boolean[numCities];
        for (int i = 0; i < numCities; i++)
            visited[i] = false;
        visited[greedy[0]] = true;
        visited[greedy[1]] = true;
        visited[greedy[2]] = true;
        // Main loop: keep repeating until partial tour covers all cities
        while (partialTourSize < numCities)
        {
            int smallestIncrease = Integer.MAX_VALUE;
            int increase = 0;
            int bestInsertionPoint = 0;
            int bestCity = 0;
            // Scan through all cities, stopping at unvisited cities
            for (int i = 0; i < numCities; i++)
            {
                if (!visited[i])
                {
                    // Consider all possible positions of inserting city i into
                    // the tour
                    // and record the smallest increase
                    for (int j = 0; j < partialTourSize; j++)
                    {
                        increase = getDistance(greedy[j], i)
                                + getDistance(i, greedy[(j + 1) % numCities])
                                - getDistance(greedy[j], greedy[(j + 1)
                                        % numCities]);
                        if (increase < smallestIncrease)
                        {
                            smallestIncrease = increase;
                            bestCity = i;
                            bestInsertionPoint = j;
                        } // end of if we have found a smaller increase
                    } // end of for-j
                } // end of if not visited
            } // end of for-i
              // Now we are ready to insert the bestCity at the bestInsertionPoint
            for (int j = partialTourSize - 1; j > bestInsertionPoint; j--)
                greedy[j + 1] = greedy[j];
            greedy[bestInsertionPoint + 1] = bestCity;
            visited[bestCity] = true;
            partialTourSize++;
        } // end-while
        return greedy;
    }

    void copy(int[] source, int[] dest)
    {
        for (int i = 0; i < dest.length; i++)
            dest[i] = source[i];
    }

    void TSP(int[] R, int partialTourSize, boolean[] visited, int[] T)
    {
        // Base case: we have discovered a tour better than T
        if ((partialTourSize == numCities) && (cost(R) < cost(T)))
        {
            System.out.println("Base case. Tour cost is " + cost(R));
            copy(R, T);
            return;
        }
        // Another base case: our partial tour is not worth completing
        if (cost(R, partialTourSize) >= cost(T))
            return;
        // Recursive case: R is not complete and is currently better than T
        // and is therefore worth completing
        for (int i = 0; i < numCities; i++)
        {
            if (!visited[i])
            {
                // System.out.println("Appending " + i);
                visited[i] = true;
                R[partialTourSize++] = i;
                TSP(R, partialTourSize, visited, T);
                partialTourSize--;
                visited[i] = false;
                // System.out.println("Deleting " + i);
            }
        } // end of for-loop
    } // end of TSP

    double cost(int[] tour)
    {
        return cost(tour, tour.length);
    }

    double cost(int[] tour, int tourSize)
    {
        double c = 0;
        for (int i = 0; i < tourSize - 1; i++)
            c = c + getDistance(tour[i], tour[i + 1]);
        c = c + getDistance(tour[tourSize - 1], tour[0]);
        return c;
    }

    // Main method
    public static void main(String[] args)
    {
        int n = 15;
        TSPUsingMST T = new TSPUsingMST(n);
        // Initialize the list of vertices in the tree
        // Initially, no one except vertex 0 is in the tree
        boolean[] visited = new boolean[n];
        for (int i = 0; i < n; i++)
            visited[i] = false;
        visited[0] = true;
        // Initialize the int[] that maintains the tree to default values
        // No vertices have parents set, except vertex 0 whose parent is itself
        int[] tree = new int[n];
        for (int i = 0; i < n; i++)
            tree[i] = -1;
        tree[0] = 0;
        for (int i = 1; i <= n - 1; i++)
        {
            long minWeight = Long.MAX_VALUE;
            int bestVertex = -1;
            int bestParent = -1;
            for (int j = 0; j < n; j++)
            {
                for (int k = 0; k < n; k++)
                {
                    if ((visited[j]) && (!visited[k]))
                    {
                        if (T.getDistance(j, k) < minWeight)
                        {
                            minWeight = T.getDistance(j, k);
                            bestVertex = k;
                            bestParent = j;
                        } // end if better distance is found
                    } // end if an edge between a visited and an unvisited is
                      // found
                } // end for-k
            } // end for-j
              // Update visited and tree
            visited[bestVertex] = true;
            tree[bestVertex] = bestParent;
        } // end for-i
          // Printing the MST
        for (int i = 1; i < n; i++)
            System.out.println(T.cityName[i] + " " + T.cityState[i] + ", "
                    + T.cityName[tree[i]] + " " + T.cityState[tree[i]]);
        // Compting the MST cost
        long cost = 0;
        for (int i = 0; i < n; i++)
            cost += T.getDistance(i, tree[i]);
        System.out.println("The cost of the minimum spanning tree is " + cost);
    } // end main method
} // end class



Output:

Yankton SD, Wisconsin Dells WI
Yakima WA, Williston ND
Worcester MA, Wilmington DE
Wisconsin Dells WI, Youngstown OH
Winston-Salem NC, Winchester VA
Winnipeg MB, Yankton SD
Winchester VA, Wilmington DE
Wilmington NC, Winston-Salem NC
Wilmington DE, Williamsport PA
Williston ND, Winnipeg MB
Williamsport PA, Youngstown OH
Williamson WV, Winston-Salem NC
Wichita Falls TX, Wichita KS
Wichita KS, Yankton SD
The cost of the minimum spanning tree is 5461



More Java Programs:


















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...