Tuesday, 28 November 2017

Java Program to Give an Implementation of the Traditional Chinese Postman Problem


Code:

package com.executecodes.graph;

import java.util.Vector;

public class ChinesePostmanProblem
{
    int            N;                // number of vertices
    int            delta[];          // deltas of vertices
    int            neg[], pos[];     // unbalanced vertices
    int            arcs[][];         // adjacency matrix, counts arcs between
                                      // vertices
    Vector label[][];        // vectors of labels of arcs (for each
                                      // vertex
    // pair)
    int            f[][];            // repeated arcs in CPT
    float          c[][];            // costs of cheapest arcs or paths
    String         cheapestLabel[][]; // labels of cheapest arcs
    boolean        defined[][];      // whether path cost is defined between
                                      // vertices
    int            path[][];         // spanning tree of the graph
    float          basicCost;        // total cost of traversing each arc once

    void solve()
    {
        leastCostPaths();
        checkValid();
        findUnbalanced();
        findFeasible();
        while (improvements())
            ;
    }

    // allocate array memory, and instantiate graph object
    @SuppressWarnings("unchecked")
    ChinesePostmanProblem(int vertices)
    {
        if ((N = vertices) <= 0)
            throw new Error("Graph is empty");
        delta = new int[N];
        defined = new boolean[N][N];
        label = new Vector[N][N];
        c = new float[N][N];
        f = new int[N][N];
        arcs = new int[N][N];
        cheapestLabel = new String[N][N];
        path = new int[N][N];
        basicCost = 0;
    }

    ChinesePostmanProblem addArc(String lab, int u, int v, float cost)
    {
        if (!defined[u][v])
            label[u][v] = new Vector();
        label[u][v].addElement(lab);
        basicCost += cost;
        if (!defined[u][v] || c[u][v] > cost)
        {
            c[u][v] = cost;
            cheapestLabel[u][v] = lab;
            defined[u][v] = true;
            path[u][v] = v;
        }
        arcs[u][v]++;
        delta[u]++;
        delta[v]--;
        return this;
    }

    void leastCostPaths()
    {
        for (int k = 0; k < N; k++)
            for (int i = 0; i < N; i++)
                if (defined[i][k])
                    for (int j = 0; j < N; j++)
                        if (defined[k][j]
                                && (!defined[i][j] || c[i][j] > c[i][k]
                                        + c[k][j]))
                        {
                            path[i][j] = path[i][k];
                            c[i][j] = c[i][k] + c[k][j];
                            defined[i][j] = true;
                            if (i == j && c[i][j] < 0)
                                return; // stop on negative cycle
                        }
    }

    void checkValid()
    {
        for (int i = 0; i < N; i++)
        {
            for (int j = 0; j < N; j++)
                if (!defined[i][j])
                    throw new Error("Graph is not strongly connected");
            if (c[i][i] < 0)
                throw new Error("Graph has a negative cycle");
        }
    }

    float cost()
    {
        return basicCost + phi();
    }

    float phi()
    {
        float phi = 0;
        for (int i = 0; i < N; i++)
            for (int j = 0; j < N; j++)
                phi += c[i][j] * f[i][j];
        return phi;
    }

    void findUnbalanced()
    {
        int nn = 0, np = 0; // number of vertices of negative/positive delta
        for (int i = 0; i < N; i++)
            if (delta[i] < 0)
                nn++;
            else if (delta[i] > 0)
                np++;
        neg = new int[nn];
        pos = new int[np];
        nn = np = 0;
        for (int i = 0; i < N; i++)
            // initialise sets
            if (delta[i] < 0)
                neg[nn++] = i;
            else if (delta[i] > 0)
                pos[np++] = i;
    }

    void findFeasible()
    {   // delete next 3 lines to be faster, but non-reentrant
        int delta[] = new int[N];
        for (int i = 0; i < N; i++)
            delta[i] = this.delta[i];
        for (int u = 0; u < neg.length; u++)
        {
            int i = neg[u];
            for (int v = 0; v < pos.length; v++)
            {
                int j = pos[v];
                f[i][j] = -delta[i] < delta[j] ? -delta[i] : delta[j];
                delta[i] += f[i][j];
                delta[j] -= f[i][j];
            }
        }
    }

    boolean improvements()
    {
        ChinesePostmanProblem residual = new ChinesePostmanProblem(N);
        for (int u = 0; u < neg.length; u++)
        {
            int i = neg[u];
            for (int v = 0; v < pos.length; v++)
            {
                int j = pos[v];
                residual.addArc(null, i, j, c[i][j]);
                if (f[i][j] != 0)
                    residual.addArc(null, j, i, -c[i][j]);
            }
        }
        residual.leastCostPaths(); // find a negative cycle
        for (int i = 0; i < N; i++)
            if (residual.c[i][i] < 0) // cancel the cycle (if any)
            {
                int k = 0, u, v;
                boolean kunset = true;
                u = i;
                do // find k to cancel
                {
                    v = residual.path[u][i];
                    if (residual.c[u][v] < 0 && (kunset || k > f[v][u]))
                    {
                        k = f[v][u];
                        kunset = false;
                    }
                }
                while ((u = v) != i);
                u = i;
                do // cancel k along the cycle
                {
                    v = residual.path[u][i];
                    if (residual.c[u][v] < 0)
                        f[v][u] -= k;
                    else
                        f[u][v] += k;
                }
                while ((u = v) != i);
                return true; // have another go
            }
        return false; // no improvements found
    }

    static final int NONE = -1; // anything < 0

    int findPath(int from, int f[][]) // find a path between unbalanced vertices
    {
        for (int i = 0; i < N; i++)
            if (f[from][i] > 0)
                return i;
        return NONE;
    }

    void printCPT(int startVertex)
    {
        int v = startVertex;
        // delete next 7 lines to be faster, but non-reentrant
        int arcs[][] = new int[N][N];
        int f[][] = new int[N][N];
        for (int i = 0; i < N; i++)
            for (int j = 0; j < N; j++)
            {
                arcs[i][j] = this.arcs[i][j];
                f[i][j] = this.f[i][j];
            }
        while (true)
        {
            int u = v;
            if ((v = findPath(u, f)) != NONE)
            {
                f[u][v]--; // remove path
                for (int p; u != v; u = p) // break down path into its arcs
                {
                    p = path[u][v];
                    System.out.println("Take arc " + cheapestLabel[u][p]
                            + " from " + u + " to " + p);
                }
            }
            else
            {
                int bridgeVertex = path[u][startVertex];
                if (arcs[u][bridgeVertex] == 0)
                    break; // finished if bridge already used
                v = bridgeVertex;
                for (int i = 0; i < N; i++)
                    // find an unused arc, using bridge last
                    if (i != bridgeVertex && arcs[u][i] > 0)
                    {
                        v = i;
                        break;
                    }
                arcs[u][v]--; // decrement count of parallel arcs
                System.out.println("Take arc "
                        + label[u][v].elementAt(arcs[u][v]) + " from " + u
                        + " to " + v); // use each arc label in turn
            }
        }
    }

    static public void main(String args[])
    {
        // create a graph of four vertices
        ChinesePostmanProblem G = new ChinesePostmanProblem(4);
        // add the arcs for the example graph
        G.addArc("a", 0, 1, 1).addArc("b", 0, 2, 1).addArc("c", 1, 2, 1)
                .addArc("d", 1, 3, 1).addArc("e", 2, 3, 1).addArc("f", 3, 0, 1);
        G.solve(); // find the CPT
        G.printCPT(0); // print it, starting from vertex 0
        System.out.println("Cost = " + G.cost());
        OpenCPP.test();
    }

    // Print arcs and f
    void debugarcf()
    {
        for (int i = 0; i < N; i++)
        {
            System.out.print("f[" + i + "]= ");
            for (int j = 0; j < N; j++)
                System.out.print(f[i][j] + " ");
            System.out.print("  arcs[" + i + "]= ");
            for (int j = 0; j < N; j++)
                System.out.print(arcs[i][j] + " ");
            System.out.println();
        }
    }

    // Print out most of the matrices: defined, path and f
    void debug()
    {
        for (int i = 0; i < N; i++)
        {
            System.out.print(i + " ");
            for (int j = 0; j < N; j++)
                System.out
                        .print(j + ":" + (defined[i][j] ? "T" : "F") + " "
                                + c[i][j] + " p=" + path[i][j] + " f="
                                + f[i][j] + "; ");
            System.out.println();
        }
    }

    // Print out non zero f elements, and phi
    void debugf()
    {
        float sum = 0;
        for (int i = 0; i < N; i++)
        {
            boolean any = false;
            for (int j = 0; j < N; j++)
                if (f[i][j] != 0)
                {
                    any = true;
                    System.out.print("f(" + i + "," + j + ":" + label[i][j]
                            + ")=" + f[i][j] + "@" + c[i][j] + "  ");
                    sum += f[i][j] * c[i][j];
                }
            if (any)
                System.out.println();
        }
        System.out.println("-->phi=" + sum);
    }

    // Print out cost matrix.
    void debugc()
    {
        for (int i = 0; i < N; i++)
        {
            boolean any = false;
            for (int j = 0; j < N; j++)
                if (c[i][j] != 0)
                {
                    any = true;
                    System.out.print("c(" + i + "," + j + ":" + label[i][j]
                            + ")=" + c[i][j] + "  ");
                }
            if (any)
                System.out.println();
        }
    }
}

class OpenCPP
{
    class Arc
    {
        String lab;
        int    u, v;
        float  cost;

        Arc(String lab, int u, int v, float cost)
        {
            this.lab = lab;
            this.u = u;
            this.v = v;
            this.cost = cost;
        }
    }

    Vector arcs = new Vector();
    int         N;

    OpenCPP(int vertices)
    {
        N = vertices;
    }

    OpenCPP addArc(String lab, int u, int v, float cost)
    {
        if (cost < 0)
            throw new Error("Graph has negative costs");
        arcs.addElement(new Arc(lab, u, v, cost));
        return this;
    }

    float printCPT(int startVertex)
    {
        ChinesePostmanProblem bestGraph = null, g;
        float bestCost = 0, cost;
        int i = 0;
        do
        {
            g = new ChinesePostmanProblem(N + 1);
            for (int j = 0; j < arcs.size(); j++)
            {
                Arc it = arcs.elementAt(j);
                g.addArc(it.lab, it.u, it.v, it.cost);
            }
            cost = g.basicCost;
            g.findUnbalanced(); // initialise g.neg on original graph
            g.addArc("'virtual start'", N, startVertex, cost);
            g.addArc("'virtual end'",
            // graph is Eulerian if neg.length=0
                    g.neg.length == 0 ? startVertex : g.neg[i], N, cost);
            g.solve();
            if (bestGraph == null || bestCost > g.cost())
            {
                bestCost = g.cost();
                bestGraph = g;
            }
        }
        while (++i < g.neg.length);
        System.out.println("Open CPT from " + startVertex
                + " (ignore virtual arcs)");
        bestGraph.printCPT(N);
        return cost + bestGraph.phi();
    }

    static void test()
    {
        OpenCPP G = new OpenCPP(4); // create a graph of four vertices
        // add the arcs for the example graph
        G.addArc("a", 0, 1, 1).addArc("b", 0, 2, 1).addArc("c", 1, 2, 1)
                .addArc("d", 1, 3, 1).addArc("e", 2, 3, 1).addArc("f", 3, 0, 1);
        int besti = 0;
        float bestCost = 0;
        for (int i = 0; i < 4; i++)
        {
            System.out.println("Solve from " + i);
            float c = G.printCPT(i);
            System.out.println("Cost = " + c);
            if (i == 0 || c < bestCost)
            {
                bestCost = c;
                besti = i;
            }
        }
        G.printCPT(besti);
        System.out.println("Cost = " + bestCost);
    }
}


Output:

Take arc b from 0 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Cost = 10.0
Solve from 0
Open CPT from 0 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 8.0
Solve from 1
Open CPT from 1 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 7.0
Solve from 2
Open CPT from 2 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 10.0
Solve from 3
Open CPT from 3 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 9.0
Open CPT from 1 (ignore virtual arcs)
Take arc 'virtual start' from 4 to 1
Take arc d from 1 to 3
Take arc f from 3 to 0
Take arc a from 0 to 1
Take arc c from 1 to 2
Take arc e from 2 to 3
Take arc f from 3 to 0
Take arc b from 0 to 2
Take arc 'virtual end' from 2 to 4
Cost = 7.0



More Java Programs:


















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...