Wednesday, 22 November 2017

C++ Program to Implement Dijkstra’s Algorithm Using Set


Code:

#include   stdio.h
#include   limits.h

// Number of vertices in the graph
#define V 9

// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool sptSet[])
{
    // Initialize min value
    int min = INT_MAX, min_index;

    for (int v = 0; v < V; v++)
        if (sptSet[v] == false && dist[v] <= min)
            min = dist[v], min_index = v;

    return min_index;
}

// A utility function to print the constructed distance array
int printSolution(int dist[], int n)
{
    printf("Vertex   Distance from Source\n");
    for (int i = 0; i < V; i++)
        printf("%d \t\t %d\n", i, dist[i]);
}

// Funtion that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
    int dist[V]; // The output array.  dist[i] will hold the shortest
    // distance from src to i

    bool sptSet[V]; // sptSet[i] will true if vertex i is included in shortest
    // path tree or shortest distance from src to i is finalized

    // Initialize all distances as INFINITE and stpSet[] as false
    for (int i = 0; i < V; i++)
        dist[i] = INT_MAX, sptSet[i] = false;

    // Distance of source vertex from itself is always 0
    dist[src] = 0;

    // Find shortest path for all vertices
    for (int count = 0; count < V - 1; count++)
    {
        // Pick the minimum distance vertex from the set of vertices not
        // yet processed. u is always equal to src in first iteration.
        int u = minDistance(dist, sptSet);

        // Mark the picked vertex as processed
        sptSet[u] = true;

        // Update dist value of the adjacent vertices of the picked vertex.
        for (int v = 0; v < V; v++)

            // Update dist[v] only if is not in sptSet, there is an edge from
            // u to v, and total weight of path from src to  v through u is
            // smaller than current value of dist[v]
            if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u]
                    + graph[u][v] < dist[v])
                dist[v] = dist[u] + graph[u][v];
    }

    // print the constructed distance array
    printSolution(dist, V);
}

// driver program to test above function
int main()
{
    /* Let us create the example graph discussed above */
    int graph[V][V] =
            { { 0, 4, 0, 0, 0, 0, 0, 8, 0 }, { 4, 0, 8, 0, 0, 0, 0, 11, 0 }, {
                    0, 8, 0, 7, 0, 4, 0, 0, 2 },
                    { 0, 0, 7, 0, 9, 14, 0, 0, 0 }, { 0, 0, 0, 9, 0, 10, 0, 0,
                            0 }, { 0, 0, 4, 0, 10, 0, 2, 0, 0 }, { 0, 0, 0, 14,
                            0, 2, 0, 1, 6 }, { 8, 11, 0, 0, 0, 0, 1, 0, 7 }, {
                            0, 0, 2, 0, 0, 0, 6, 7, 0 } };

    dijkstra(graph, 0);

    return 0;
}


Output:

Vertex   Distance from Source
0 0
1 4
2 12
3 19
4 21
5 11
6 9
7 8
8 14
------------------
(program exited with code: 0)
Press return to continue



More C++ Programs:















100+ Best Home Decoration Ideas For Christmas Day 2019 To Make Home Beautiful

Best gifts for Christmas Day | Greeting cards for Christmas Day | Gift your children a new gift on Christmas day This Christmas d...